Inapproximability of Maximum Biclique Problems, Minimum k-Cut and Densest At-Least-k-Subgraph from the Small Set Expansion Hypothesis
نویسنده
چکیده
The Small Set Expansion Hypothesis is a conjecture which roughly states that it is NP-hard to distinguish between a graph with a small subset of vertices whose (edge) expansion is almost zero and one in which all small subsets of vertices have expansion almost one. In this work, we prove conditional inapproximability results with essentially optimal ratios for the following graph problems based on this hypothesis: Maximum Edge Biclique, Maximum Balanced Biclique, Minimum k-Cut and Densest At-Least-k-Subgraph. Our hardness results for the two biclique problems are proved by combining a technique developed by Raghavendra, Steurer and Tulsiani to avoid locality of gadget reductions with a generalization of Bansal and Khot’s long code test whereas our results for Minimum k-Cut and Densest At-Least-k-Subgraph are shown via elementary reductions.
منابع مشابه
Inapproximability of Maximum Edge Biclique, Maximum Balanced Biclique and Minimum k-Cut from the Small Set Expansion Hypothesis
The Small Set Expansion Hypothesis (SSEH) is a conjecture which roughly states that it is NPhard to distinguish between a graph with a small set of vertices whose expansion is almost zero and one in which all small sets of vertices have expansion almost one. In this work, we prove conditional inapproximability results for the following graph problems based on this hypothesis: Maximum Edge Bicli...
متن کاملThe Minimum k-Colored Subgraph Problem in Haplotyping and DNA Primer Selection
In this paper we consider the minimum k-colored subgraph problem (MkCSP), which is motivated by maximum parsimony based population haplotyping and minimum primer set selection for DNA amplification by multiplex Polymerase Chain Reaction, two important problems in computational biology. We use several new techniques to obtain improved approximation algorithms for both the general MkCSP and some ...
متن کاملApproximating Clique and Biclique Problems
We present here 2-approximation algorithms for several node deletion and edge deletion biclique problems and for an edge deletion clique problem. The biclique problem is to find a node induced subgraph that is bipartite and complete. The objective is to minimize the total weight of nodes or edges deleted so that the remaining subgraph is bipartite complete. Several variants of the biclique prob...
متن کاملThe Parameterized Complexity of k-Biclique
Given a graph G and a parameter k, the k-biclique problem asks whether G contains a complete bipartite subgraph Kk,k. This is the most easily stated problem on graphs whose parameterized complexity is still unknown. We provide an fpt-reduction from k-clique to k-biclique, thus solving this longstanding open problem. Our reduction use a class of bipartite graphs with a threshold property of inde...
متن کاملPolynomial integrality gaps for strong SDP relaxations of Densest k-subgraph
The Densest k-subgraph problem (i.e. find a size k subgraph with maximum number of edges), is one of the notorious problems in approximation algorithms. There is a significant gap between known upper and lower bounds for Densest k-subgraph: the current best algorithm gives an ≈ O(n) approximation, while even showing a small constant factor hardness requires significantly stronger assumptions th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Algorithms
دوره 11 شماره
صفحات -
تاریخ انتشار 2018